

schemata

[image: rtd-badge] [https://schemata.readthedocs.io/en/edits/readme.html]
[image: gh-badge] [https://github.com/deathbeds/schemata/actions/workflows/python-package.yml]
[image: cov-badge] [https://app.codecov.io/gh/deathbeds/schemata]

schemata is trait system for Python and IPytohn applications that provide:

	validation with jsonschema conventions

	testing strategies hypothesis

	user interfaces

	ansi with rich

	a port of the react json schema form ui-schema to ipywidgets

	observable pattern trait patterns

schemata’s type system is composable and expresses the type annotations in the form of json schema. attaching the schema to the types allows different interfaces to construct defaults in aspects like testing, visualization, and verification.

Learn more from the documentation.

schemata types and traits

schemata is python type/trait system based on that jsonschema. the schemata types build jsonschema that describe test case, validation, observable patterns, and visualization.

schemata types

schemata is designed as a composable type system for python that allows enhanced type descriptions through common jsonschema conventions. as types, schemata is concerned with constructing json schema representation of type annotations. in other words, it is concerned with enhanced type descriptions beyond the vanilla string, integer, float, lists, and dictionaries python provides.

the enhanced type descriptions provide extra constraints on the types that are defined in the Json Schema Draft 7 specification. the schemata.base.Generic describes that abstract interfaces for the schemata types are specifies how types are build and composed.

jsonschema provides ~50 extra properties to describe the basic types. schemata can extend to other jsonschema, and apply conventions like the react json schema form ui-schema convention that defines how types should be represented.

schemata traits

the composability of schemata types, and the enhanced schema representation, make it possible to derive different contextual views of python objects.

schemata type validation

schemata user interfaces

schemata testing strategies

schemata applications

schemata types and traits

from schemata import *

the String type

the String is a normal python string that can contain extended types descriptions for enhanced validation and representation.

 String("abc")

'abc'

 String.text()("abc")

regular expressions

one condition is a String.Pattern that defines a regular expression that validates the input.

 String.pattern("^a")("abc")

'abc'

another situation is a string that is a regular expression.

 strings.Regex("^a").match("abc")

<re.Match object; span=(0, 1), match='a'>

the Enum type

 Enum["a", "b"]("a")

'a'

the Integer and Float types

 import math

 Integer(1), Float(math.pi)

(1, 3.141592653589793)

 Integer.minimum(0).maximum(100).multipleOf(2).range()(4)

 Float.minimum(0).maximum(100).text()(math.pi)

the List type

 List([1, "a", 2, "b"])

[1, 'a', 2, 'b']

 List[String](["a", "b"])

['a', 'b']

 List.minItems(1).maxItems(3)([1, 2])

[1, 2]

Composite types

AnyOf

 Integer | String

abc.AnyOf

OneOf

 Integer ^ String

abc.OneOf

AllOf

 String & String.Pattern["^a"]

abc.AllOf

Python Types

 Py

schemata.types.Py

the Null type

 assert Null() is Null(None) is Null[None]() is None

the Bool type

 assert Bool() is Bool[False]() is Bool[True](False) is bool() is False

 assert Bool(True) is Bool[True]() is Bool[False](True) is True

schemata ipython extension

from schemata import *
from IPython import get_ipython
%reload_ext schemata

String widgets

string: String = "abc"

'abc'

string_text: String.text() = "def"

string_textarea: String.textarea() = "hij"

NBVAL_IGNORE_OUTPUT
string_html: strings.Html = "klm"

klm

string = string_textarea = string_text = string_html ="wxyz"

string_date: strings.Date = "2020-01-01" # need to fix this

datetime.datetime(2020, 1, 1, 0, 0)

Numeric widgets

integer: Integer = 1

1

integer_updown: Integer.updown() = 2

integer_range: Integer.range() = 3

integer_bounded: Integer.minimum(0).maximum(10).ui() = 5

number: Number = 1.5

1.5

number_updown: Number.updown() = 2.14

number_range: Number.range() = 3.14

number_bounded: Number.minimum(0).maximum(10).ui() = 5.6

Enum widgets

e = Enum[["a", "b", "c", "d", "e", "f", "g"]]

enum: e = "a"

'a'

enum_dropdown: e.dropdown() = "b"

enum_select: e.select() = "c"

enum_slider: e.range() = "d"

enum_toggle: e.toggle() = "e"

enum_radio: e.radio() = "f"

enum = enum_dropdown = enum_radio = enum_select = enum_slider = enum_toggle = "a"

comparison with other trait libraries

schemata is preceded by a few different trait libraries enthought.traits, traitlets, and pydantic.
traitlets is a reimplementation of the enthought.traits by the IPython community; traitlets have been the
configuration for jupyter and IPython since.
traitlets preceeded a lot of critical web technology critical to the jupyter interactive computing ecosystem;
traitlets are only concerned with Python objects and lack features of the modern.
pydantic provides value as trait system by building off of the jsonschema specification to validate types.
schemata unifies traitlets and pydantic by providing a description type interface based off of open web standards.

The desire is a trait system for interactive computing that enables more expressive design and testing of interactive
computing technology.

Index

 _static/minus.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 schemata

